Identification of meningioma recurrence gene expression signature by DNA microarray experiments

نویسندگان

  • Feng Chen
  • Chun-Xiang Xiang
  • Da-Quan Zhou
  • Yi Zhou
  • Xiang-Sheng Ao
  • Peng Peng
  • Hai-Quan Zhang
  • Xing Huang
چکیده

Meningioma recurrence after complete removal remains one of the most relevant problems of meningioma treatment. DNA microarray technologies allow the screening of several thousands genes simultaneously. This gene expression profiling approach has been successfully applied in many researches associated with tumor classification. We analyzed genome wide expression profiles of 68 meningioma samples. The differential gene expression analysis was conducted to identify meningioma recurrence gene expression signature. The gene set enrichment analysis and Cox proportion hazards methods were used to characterize the gene signature. A total of 99 genes (65 up and 34 down) were identified as significantly regulated in recurrent meningioma tumors. These genes mainly enriched in the biological process of cell cycle. Among them, seven genes were significantly associated with meningioma patients’ overall survival. The cell cycle genes may play a vital role in the meningioma progression. However, further research is required to validate our findings and discover novel treatment and prognosis potentialities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Gene expression profile for predicting survival of patients with meningioma.

Current staging methods are inadequate for predicting the overall survival of meningioma. DNA microarray technologies improve the understanding of tumour progression. We analysed genome wide expression profiles of 119 meningioma samples from two previous published DNA microarray studies. The Cox proportional hazards regression models were applied to identify overall survival related gene signat...

متن کامل

Integration and Reduction of Microarray Gene Expressions Using an Information Theory Approach

The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016